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Self-organized growth model for a driven interface in random media
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We introduce a simple self-organized growth model in the quenched Edwards-Wilkinson universality class.
The roughness and growth exponents are obtained for the modek &4sl5 andB=0.89, respectively. These
values of exponents are in good agreement with previous results obtained from numerical integrations or
discretized model simulations of the quenched Edwards-Wilkinson equation. The velocity of a driven interface
is found to be independent of the slope of the tilted substf&E063-651X%99)13005-§

PACS numbe(s): 05.40:—a, 68.35.Fx, 47.55.Mh

Recently the motion of driven interfaces in random medig 10]. The obtained roughness exponent 0.63 gives an ex-
has attracted a great deal of interest because it is related tellent agreement with a mapping to the directed percolation
many physical phenomena such as fluid invasion in porousluster and also the value obtained from direct numerical
media[1,2], depinning of charge density wav¢3], fluid integration or discretized model simulation of the QKPZ
imbibition in paper{4], driven flux motion in type-Il super- equation.
conductorg5,6], etc. A well known physical feature of the Even thougha=0.63 for the QKPZ universality class is
driven motion of an interface is an interplay between thegenerally accepted, many experiments having rather larger
quenched disorder and the driving force acting on the intervalues than 0.681,11] lead to questions for other universal-
face. The interface is pinned when the driving foféds ity classes. The simplest possible choice is the quenched
smaller than the pinning strength induced by the quenche@dwards-Wilkinson(QEW) universality class, described by
disorder. For a larg€, however, the interface can move for the EW equation with the quenched disor{2};

a while until it is pinned again. There exists a threshold of

the driving forceF . above which the interface moves with a ah(x,t) 2

certain velocity. Accordingly the velocity is zero fdf ot =vVh+F+7(x.h). )
<F., and it increases foF>F_.. This phenomenon is

called the pinning-depinning transition. It turns out that this linear equation has nontrivial scaling

The dynamics of driven interfaces in a random mediumproperties due to the quenched disorder. Many analytic and
near the thresholdR—F;) has been well explained by the numerical works have been carried out to describe and un-
quenched Kardar-Parisi-Zhatt@KP2) equation[7], derstand the driven motion of interfaces following the QEW
equation, Eq(3). Analytical [12] and numericalusing the
height-height correlation functignstudies[13] give us a
roughness exponent=1 for the surface dimensiod=1.
However, an anomalous roughness exponentl [14-1§
whereh(x,t) is the height of the interface at positiorand  has been found when the global scaling from the surface
time t. F is an external driving force ang is a quenched Width is used. All the direct integrations of the QEW equa-
noise with (7(x,h)}=0 and (7(x,h) 7(x’,h"))=2Ds(x  tion [17] and various model$14-16,18 corresponding to
—x')8(h—h’). The global interface width, defined by the discretization of this equation give>1. There thus re-
W(L,t)=(L*d'2x[h(x,t)—h(t)]z)l’z, is expected to scale Ir;ségldrlzzglrtiements between many of the numerical and ana-

ah(x,t)
ot

=vV2h+A(Vh)2+F+ 5(x,h), 1)

as In spite of disagreements, it is generally accepted that the
8 if t<lL? QEW universality class exists and a simple growth model

WLt~ ., . , 2) could be found to describe the super-rough interface charac-
L if t>Ls terized by a>1. The Sneppen model is a self-organized

o growth model in the QKPZ universality class. An interesting
Hereh, L, andd’ denote the mean height, system size, andeature of this model is that the growing surface is not con-
substrate dimension, respectively. The angular bracket standslled by an external driving forcé but rather by the self-
for statistical averagex (B) is the roughneséthe growth  organized growth. Therefore it would be interesting if we
exponent andz=a/B is the dynamic exponent. The most can find a simple QEW model as an analogy of the Sneppen
commonly measured exponent is the roughness expenent model in the QKPZ universality class. In this paper, we will

A number of stochastic discrete models have been introintroduce a simple discrete growth model belonging to the
duced to mimic the QKPZ equation, EQ) [4,8]. A simple  QEW universality class. Our model is not the discretized
but notable growth model among them has been proposed lyersion of the QEW equation. The motion of the interface is
Sneppen several years al@. The scaling properties of the not controlled by an external driving force, but rather by the
surface of the model are found to be controlled by the di-quenched disorder on the surface and also by the self-
rected percolation structure on the quenched random forcemganized growth.
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FIG. 1. Schematic representations of the stochastic rule of our
model. The arrows indicate the selected sites having the lowest lnt
minimum random number. The gray squares denote the newly

added particles on the interface. The bold numbers denote the FIG. 2. Plot Of_WZ(L-t) vs timet in double logarithmic scales
newly updated random numbers. for the system sizd.=1024. The slope of the dotted line 8

=1.78. Inset: The slope of the line is the same plotef(L,t)
obtained with B8,=1.5.

The stochastic rule of our model in+1l dimensions is

def"?ed as fo_II_ows_: We preassign _random num_bers, rePIHidth starting from the saturated interface instead of the flat
senting impurities in a random medium, to all perimeter S'teslnterface The growth exponent is measured/as-0.75

of tthel |n|t|altlr)1/ fIatllntter;aci. At ﬁ_acr:]thme st?ept; \I/ve _add This value is also consistent with the one obtained from the
particle ‘on the selected site, which has a gioba mlnlmu”%EW equation after saturation and analytic solution of the

random number, and then an existing random number on th : .
site is updated. After that we allow the newly added particle EW equatior{12,18. The exponenfs is smaller thans

. . obtained from a flat interface. In the Sneppen model, the two
to _relax randomly to ane of the nearest nglghbor sites whos ynamic exponents obtained starting from both a flat inter-
height is lower than that of the selecteq S|te.. We also upda. ce and a critica(saturatejl state show the same behavior
the random number at the newly occupied site. When there S5 our mode[19]
no relaxation of an adc_ied particle, we update random num- In order to obtain the roughness exponent, we plot the
bers of two nearest neighbors as well as that of the SeleCtesdaturated value 0W2(L) versus system size i'n double
site. The sto_chastlc growing rule of our model is depicted mlogarithmic scale. The obtained roughness exponent is
Fig. 1. In this way we can generate a downhill movement :

which is a universal feature appearing in all EW-type mod-— 1.15 as shown in Fig. 3. From these numerical results, the
els. In the Sneppen model, there are avalanches of grovv't(liyn"’lmIC exponent is obtained as a/f=1.29. The rough-

due to the restricted solid-on-soli®RSOS condition. The ness exponent value measured from the numerical integra-

RSOS condition actually results in a constraint to the slopetlon of the QEW equation and automaton model in QEW

[16] and generates the KPZ-type nonlinearity in E. In uhmversalr;ty class is aboutbl.(_)—t.:%!o4—16,18. Tdhelrgfore .
our stochastic growth rule, we have only one avalanche t € ropﬂ rr:ess exlpo?entho taII;V?/ rom oulr mol el IS consis-
the site with lower height, no matter what the height differ- en\svwnht € relsu ts for the 3 th uulv_err?tar:ty_ ch:;lss. lati
ence between two sites. Therefore no constraint to the Slo%nctﬁ)n g{f) g;((i)nergeaisure € height-neight correlation
is imposed, indicating the absence of the KPZ nonlinearity.

Moreover we update the existing random numbers of two
nearest neighbors if the height of a selected site is not larger
than those of two nearest neighbors. This process is also
helpful to avoid any possible local slope dependence of the
velocity of a growing interface. Hence we expect the generic
QEW behavior in this model.

We have carried out Monte Carlo simulations for system
sizesL=64, 128, 256, 512, and 1024. Numerical data are
averaged typically over 100 configurations. In order to obtain
the growth exponent for our model, we measure the time-
dependent behavior of the global interface widtf(L,t)
starting from an initially flat interface. We plav3(L,t) ver- 0 1 2 3
sus time in double logarithmic scale in Fig. 2. The interface InL
width initially grows with the growth exponent 0.5 as ran- n
dom growth. After that, the interface width grows with the £ 3. Plot of W2(L,t) vs system sizé in double logarithmic
exponent3=0.89 as shown in Fig. 2. This value of growth scales for the system sizks-64, 128, 256, 512, and 1024. The line
exponent is consistent with the direct integration result of theyptained from the least squares fits has the slope=2.3. Inset:
QEW equatior{17] and the result from the automaton mod- Plot of C%(x) vs x in double logarithmic scales for the system size
els in the QEW universality clagd4—16,18. We also con- L=1024. The line obtained from the least squares fits has the slope
sider another growth exponent by measuring the globata.=1.7.
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1 1/2 41220
C(x)= Fg[h(erxl,T)—h(xl,T)]2> . @ 41180

41140

;

where timer is larger than the saturation time, a@(x) 41100

o T

scales ax“c. The roughness exponent value frdd(x) is 41060 , . , , !
a.=0.85 as shown in the inset of Fig. 3. This value is 200 400 600 800 1200
smaller than the one obtained from the global interface @

width. It is known that this anomalous scaling of the local
width is due to the super-roughening, in such a way that the

10400

roughness exponent, obtained from the height-height cor- 10000 p
relation function is smaller than the one obtained from the .
saturated value ofV?(L) [14—16. Super-rough scaling oc- 9600 ]

curs when the roughness exponent of the global width is ]

>1. Super-rough interfaces do not represent the self-affine 9200 o 500 400 600 800 1000
scaling nature since the basic step is a diverging quantity ®) L

[14]. We have obtained an averaged basic stHp(x+ 1)

—h(x,t)[y)~L%%, which diverges as.—o. The height- FIG. 4. Snapshots of the Sneppen mo@land our model(b)

height correlation function in the super-rough interfacesfor the system size =1024 and at different times. The area of both
might be given a€(x) ~x*L%" . If the correlation length  active zones is the same.
x is the same as the system sizgewe recoverC(x=L)

=W(L). Roux and Hansefl4] and Galluccio and Zhang because of the presence of the KPZ nonlinear term, so that
[20] obtained the scaling results for the roughness exponenhe velocity of the driven interface depends on the slope of
@=0.85 anda=1.20 from the numerical integration of the the tilted substrate. However, in the model belonging to the
QEW equation. These results are in agreement with our reQEW universality class, the mean velocity does not change
sults. along with the increase of the slope of the tilted substrate.
Next, let us compare the properties of self-organized criti-The velocity of our model is always = (1/L){Zth(x,t
cality between our model and the Sneppen model. The dy; 1)—E§h(x,t)}=1/L regardless of the slope of the sub-
namics of the two models evolves through the process of theyate tiit. It is because only one particle in our model is
coherent activity after a transient period. The coherent activyyqed on the interface per each time. We thus argue that our
ity means that new updatings are much more likely to occufy,gqgel belongs to the QEW universality class.
on the newly updated sites. The number of the site having an |, summary, we have introduced a simple self-organized
updated random number on the surface per each time is ongychastic growth model which belongs to the QEW univer-

two, or three in our model but the number is generally largeis,jity class. The obtained roughness and growth exponents
in the Sneppen model due to the instantaneous avalanchesig, ,—1 15 3=0.89 (before saturationand 0.75 (after

satisfy the RSOS condition. Hence the area of active zone OBaturation, respectively. These exponent values coincide
the substrate is generally much larger in the Sneppen modgle|| with those from the discretized models in the QEW
than in our model. Figure 4 shows the snapshots of the growgnjyersality class and direct integrations of the QEW equa-
ing interface at two configurations after saturation, SUPPOItjion There is no slope dependence of interface velocity in

ing the above argument. _ ) , our model, indicating the generic behavior for the QEW uni-
A well known method to classify the universality class of grgajity class.

stochastic growth models with quenched noise is to measure

the dependence of the velocity of the driven interface on the

slope of a tilted substrate after saturatj@d]. In the stochas- This work is supported in part by the Korean Science and
tic model belonging to the QKPZ universality class, theEngineering FoundatioiGrant No. 98-0702-05-01)3and
number of the particles added on the surface generally inalso in part by the Korea Research Foundati@mant No.
creases as the slope of the tilted substrate becomes large8-015-D0090.
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