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Self-organized growth model for a driven interface in random media

Kwangho Park and In-Mook Kim
Department of Physics, Korea University, Seoul 136-701, Korea

~Received 22 December 1998!

We introduce a simple self-organized growth model in the quenched Edwards-Wilkinson universality class.
The roughness and growth exponents are obtained for the model asa.1.15 andb.0.89, respectively. These
values of exponents are in good agreement with previous results obtained from numerical integrations or
discretized model simulations of the quenched Edwards-Wilkinson equation. The velocity of a driven interface
is found to be independent of the slope of the tilted substrate.@S1063-651X~99!13005-8#

PACS number~s!: 05.40.2a, 68.35.Fx, 47.55.Mh
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Recently the motion of driven interfaces in random me
has attracted a great deal of interest because it is relate
many physical phenomena such as fluid invasion in por
media @1,2#, depinning of charge density waves@3#, fluid
imbibition in paper@4#, driven flux motion in type-II super-
conductors@5,6#, etc. A well known physical feature of th
driven motion of an interface is an interplay between
quenched disorder and the driving force acting on the in
face. The interface is pinned when the driving forceF is
smaller than the pinning strength induced by the quenc
disorder. For a largeF, however, the interface can move fo
a while until it is pinned again. There exists a threshold
the driving forceFc above which the interface moves with
certain velocity. Accordingly the velocity is zero forF
,Fc , and it increases forF.Fc . This phenomenon is
called the pinning-depinning transition.

The dynamics of driven interfaces in a random medi
near the threshold (F→Fc) has been well explained by th
quenched Kardar-Parisi-Zhang~QKPZ! equation@7#,

]h~x,t !

]t
5n¹2h1l~“h!21F1h~x,h!, ~1!

whereh(x,t) is the height of the interface at positionx and
time t. F is an external driving force andh is a quenched
noise with ^h(x,h)&50 and ^h(x,h)h(x8,h8)&52Dd(x
2x8)d(h2h8). The global interface width, defined b
W(L,t)5^L2d8(x@h(x,t)2h̄(t)#2&1/2, is expected to scale
as

W~L,t !;H tb if t!Lz

La if t@Lz.
~2!

Here h̄, L, andd8 denote the mean height, system size, a
substrate dimension, respectively. The angular bracket st
for statistical average.a (b) is the roughness~the growth!
exponent andz5a/b is the dynamic exponent. The mo
commonly measured exponent is the roughness exponea.

A number of stochastic discrete models have been in
duced to mimic the QKPZ equation, Eq.~1! @4,8#. A simple
but notable growth model among them has been propose
Sneppen several years ago@9#. The scaling properties of th
surface of the model are found to be controlled by the
rected percolation structure on the quenched random fo
PRE 591063-651X/99/59~5!/5150~4!/$15.00
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@10#. The obtained roughness exponenta.0.63 gives an ex-
cellent agreement with a mapping to the directed percola
cluster and also the value obtained from direct numer
integration or discretized model simulation of the QKP
equation.

Even thougha.0.63 for the QKPZ universality class i
generally accepted, many experiments having rather la
values than 0.63@1,11# lead to questions for other universa
ity classes. The simplest possible choice is the quenc
Edwards-Wilkinson~QEW! universality class, described b
the EW equation with the quenched disorder@2#,

]h~x,t !

]t
5n¹2h1F1h~x,h!. ~3!

It turns out that this linear equation has nontrivial scali
properties due to the quenched disorder. Many analytic
numerical works have been carried out to describe and
derstand the driven motion of interfaces following the QE
equation, Eq.~3!. Analytical @12# and numerical~using the
height-height correlation function! studies @13# give us a
roughness exponenta.1 for the surface dimensiond51.
However, an anomalous roughness exponenta.1 @14–16#
has been found when the global scaling from the surf
width is used. All the direct integrations of the QEW equ
tion @17# and various models@14–16,18# corresponding to
the discretization of this equation givea.1. There thus re-
main disagreements between many of the numerical and
lytical results.

In spite of disagreements, it is generally accepted that
QEW universality class exists and a simple growth mo
could be found to describe the super-rough interface cha
terized by a.1. The Sneppen model is a self-organiz
growth model in the QKPZ universality class. An interesti
feature of this model is that the growing surface is not co
trolled by an external driving forceF but rather by the self-
organized growth. Therefore it would be interesting if w
can find a simple QEW model as an analogy of the Snep
model in the QKPZ universality class. In this paper, we w
introduce a simple discrete growth model belonging to
QEW universality class. Our model is not the discretiz
version of the QEW equation. The motion of the interface
not controlled by an external driving force, but rather by t
quenched disorder on the surface and also by the s
organized growth.
5150 ©1999 The American Physical Society
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The stochastic rule of our model in 111 dimensions is
defined as follows: We preassign random numbers, re
senting impurities in a random medium, to all perimeter si
of the initially flat interface. At each time step, we add
particle on the selected site, which has a global minim
random number, and then an existing random number on
site is updated. After that we allow the newly added parti
to relax randomly to one of the nearest neighbor sites wh
height is lower than that of the selected site. We also upd
the random number at the newly occupied site. When the
no relaxation of an added particle, we update random n
bers of two nearest neighbors as well as that of the sele
site. The stochastic growing rule of our model is depicted
Fig. 1. In this way we can generate a downhill movem
which is a universal feature appearing in all EW-type mo
els. In the Sneppen model, there are avalanches of gro
due to the restricted solid-on-solid~RSOS! condition. The
RSOS condition actually results in a constraint to the slo
@16# and generates the KPZ-type nonlinearity in Eq.~1!. In
our stochastic growth rule, we have only one avalanche
the site with lower height, no matter what the height diffe
ence between two sites. Therefore no constraint to the s
is imposed, indicating the absence of the KPZ nonlinear
Moreover we update the existing random numbers of t
nearest neighbors if the height of a selected site is not la
than those of two nearest neighbors. This process is
helpful to avoid any possible local slope dependence of
velocity of a growing interface. Hence we expect the gene
QEW behavior in this model.

We have carried out Monte Carlo simulations for syst
sizesL564, 128, 256, 512, and 1024. Numerical data
averaged typically over 100 configurations. In order to obt
the growth exponent for our model, we measure the tim
dependent behavior of the global interface widthW(L,t)
starting from an initially flat interface. We plotW2(L,t) ver-
sus time in double logarithmic scale in Fig. 2. The interfa
width initially grows with the growth exponent 0.5 as ra
dom growth. After that, the interface width grows with th
exponentb.0.89 as shown in Fig. 2. This value of grow
exponent is consistent with the direct integration result of
QEW equation@17# and the result from the automaton mo
els in the QEW universality class@14–16,18#. We also con-
sider another growth exponent by measuring the glo

FIG. 1. Schematic representations of the stochastic rule of
model. The arrows indicate the selected sites having the low
minimum random number. The gray squares denote the ne
added particles on the interface. The bold numbers denote
newly updated random numbers.
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width starting from the saturated interface instead of the
interface. The growth exponent is measured asbs.0.75.
This value is also consistent with the one obtained from
QEW equation after saturation and analytic solution of
QEW equation@12,18#. The exponentbs is smaller thanb
obtained from a flat interface. In the Sneppen model, the
dynamic exponents obtained starting from both a flat int
face and a critical~saturated! state show the same behavi
as our model@19#.

In order to obtain the roughness exponent, we plot
saturated value ofW2(L) versus system sizeL in double
logarithmic scale. The obtained roughness exponent isa
.1.15 as shown in Fig. 3. From these numerical results,
dynamic exponent is obtained asz5a/b.1.29. The rough-
ness exponent value measured from the numerical inte
tion of the QEW equation and automaton model in QE
universality class is about 1.0–1.25@14–16,18#. Therefore
the roughness exponent obtained from our model is con
tent with the results for the QEW universality class.

We have also measured the height-height correla
function C(x) defined as

ur
st
ly
he FIG. 2. Plot ofW2(L,t) vs time t in double logarithmic scales
for the system sizeL51024. The slope of the dotted line isb
51.78. Inset: The slope of the line is the same plot ofW2(L,t)
obtained with 2bs51.5.

FIG. 3. Plot ofW2(L,t) vs system sizeL in double logarithmic
scales for the system sizesL564, 128, 256, 512, and 1024. The lin
obtained from the least squares fits has the slope 2a52.3. Inset:
Plot of C2(x) vs x in double logarithmic scales for the system si
L51024. The line obtained from the least squares fits has the s
2ac51.7.
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C~x!5K 1

Ld8 (
x

@h~x1x1 ,t!2h~x1,t!#2L 1/2

, ~4!

where timet is larger than the saturation time, andC(x)
scales asxac . The roughness exponent value fromC(x) is
ac.0.85 as shown in the inset of Fig. 3. This value
smaller than the one obtained from the global interfa
width. It is known that this anomalous scaling of the loc
width is due to the super-roughening, in such a way that
roughness exponentac obtained from the height-height co
relation function is smaller than the one obtained from
saturated value ofW2(L) @14–16#. Super-rough scaling oc
curs when the roughness exponent of the global width ia
.1. Super-rough interfaces do not represent the self-af
scaling nature since the basic step is a diverging quan
@14#. We have obtained an averaged basic step,^uh(x11,t)
2h(x,t)u&;L0.26, which diverges asL→`. The height-
height correlation function in the super-rough interfac
might be given asC(x);xacLa2ac. If the correlation length
x is the same as the system sizeL, we recoverC(x5L)
5W(L). Roux and Hansen@14# and Galluccio and Zhang
@20# obtained the scaling results for the roughness expon
ac.0.85 anda.1.20 from the numerical integration of th
QEW equation. These results are in agreement with our
sults.

Next, let us compare the properties of self-organized c
cality between our model and the Sneppen model. The
namics of the two models evolves through the process of
coherent activity after a transient period. The coherent ac
ity means that new updatings are much more likely to oc
on the newly updated sites. The number of the site having
updated random number on the surface per each time is
two, or three in our model but the number is generally lar
in the Sneppen model due to the instantaneous avalanch
satisfy the RSOS condition. Hence the area of active zon
the substrate is generally much larger in the Sneppen m
than in our model. Figure 4 shows the snapshots of the gr
ing interface at two configurations after saturation, supp
ing the above argument.

A well known method to classify the universality class
stochastic growth models with quenched noise is to mea
the dependence of the velocity of the driven interface on
slope of a tilted substrate after saturation@21#. In the stochas-
tic model belonging to the QKPZ universality class, t
number of the particles added on the surface generally
creases as the slope of the tilted substrate becomes l
b,

.
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because of the presence of the KPZ nonlinear term, so
the velocity of the driven interface depends on the slope
the tilted substrate. However, in the model belonging to
QEW universality class, the mean velocity does not cha
along with the increase of the slope of the tilted substra
The velocity of our model is alwaysv5(1/L)$(x

Lh(x,t
11)2(x

Lh(x,t)%51/L regardless of the slope of the su
strate tilt. It is because only one particle in our model
added on the interface per each time. We thus argue tha
model belongs to the QEW universality class.

In summary, we have introduced a simple self-organiz
stochastic growth model which belongs to the QEW univ
sality class. The obtained roughness and growth expon
are a.1.15, b.0.89 ~before saturation! and 0.75 ~after
saturation!, respectively. These exponent values coinc
well with those from the discretized models in the QE
universality class and direct integrations of the QEW eq
tion. There is no slope dependence of interface velocity
our model, indicating the generic behavior for the QEW u
versality class.

This work is supported in part by the Korean Science a
Engineering Foundation~Grant No. 98-0702-05-01-3! and
also in part by the Korea Research Foundation~Grant No.
98-015-D0090!.

FIG. 4. Snapshots of the Sneppen model~a! and our model~b!
for the system sizeL51024 and at different times. The area of bo
active zones is the same.
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